Singular Fermi Surfaces I. General Power Counting and Higher Dimensional Cases

نویسندگان

  • Joel Feldman
  • Manfred Salmhofer
چکیده

We prove regularity properties of the self–energy, to all orders in perturbation theory, for systems with singular Fermi surfaces which contain Van Hove points where the gradient of the dispersion relation vanishes. In this paper, we show for spatial dimensions d ≥ 3 that despite the Van Hove singularity, the overlapping loop bounds we proved together with E. Trubowitz for regular non–nested Fermi surfaces [J. Stat. Phys. 84 (1996) 1209] still hold, provided that the Fermi surface satisfies a no–nesting condition. This implies that for a fixed interacting Fermi surface, the self-energy is a continuously differentiable function of frequency and momentum, so that the quasiparticle weight and the Fermi velocity remain close to their values in the noninteracting system to all orders in perturbation theory. In a companion paper, we treat the more singular two–dimensional case. [email protected]; supported by NSERC of Canada [email protected]; supported by DFG–grant Sa-1362/1-1, an ESI senior research fellowship, and NSERC of Canada

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Power Counting and Fermi Surface Renormalization *

The naive perturbation expansion for many-fermion systems is infrared divergent. One can remove these divergences by introducing counterterms. To do this without changing the model, one has to solve an inversion equation. We call this procedure Fermi surface renormalization (FSR). Whether or not FSR is possible depends on the regularity properties of the fermion self{energy. When the Fermi surf...

متن کامل

Power-law behavior of bond energy correlators in a Kitaev-type model with a stable parton Fermi surface

We study bond energy correlation functions in an exactly solvable quantum spin model of Kitaev type on the kagome lattice with stable Fermi surface of partons proposed recently by Chua et al. [arXiv:1010.1035v1]. Even though any spin correlations are of ultrashort range, we find that the bond energy correlations have power-law behavior with a 1/|r|3 envelope and oscillations at incommensurate w...

متن کامل

A General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts

In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...

متن کامل

A General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts

In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...

متن کامل

Bosonization for 2D Interacting Fermion Systems: Non-Fermi Liquid Behavior

Non-Fermi liquid behavior is found for the first time in a two-dimensional (2D) system with non-singular interactions using Haldane’s bosonization scheme. The bosonized system is solved exactly by a generalized Bogoliubov transformation. The fermion momentum distribution, calculated using a generalized Mattis-Lieb technique, exhibits a non-universal power law in the vicinity of the Fermi surfac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008